Journal of Organometallic Chemistry, 424 (1992) 353-370 Elsevier Sequoia S.A., Lausanne JOM 22261

Heteronucleare Komplexverbindungen mit Metall-Metall-Bindungen

VII *. Umsetzungen von $(NH_3)_x CuCo(CO)_4$ mit Methylendiaminen. Die Strukturen von $[(NH_3)(\eta^2,\mu_2-Me_3triaz)Cu_{2}\{\mu-Co(CO)_4\}\{Co(CO)_4\}]$ $(Me_3triaz = 1,3,5-Trimethyl-1,3,5-triazacyclohexan),$ $[\{HN(CH_2NMe_2)_{2}\}CuCo(CO)_{4}],$ $[\{^nPrN(CH_2NMe_2)_{2}\}CuCo(CO)_{4}],$ $[\{(Me_2NH)CuCo(CO)_{4}\}_{2}]$ und $[(\mu-N:N'-hmt)Cu_{2}\{Co(CO)_{4}\}_{2}]_{n/n} \cdot THF$ (hmt = Hexamethylentetramin)

Ralf Fuchs und Peter Klüfers *

Institut für Anorganische Chemie der Universität, Engesserstraße, Gebäude 30.45, W-7500 Karlsruhe 1 (Deutschland)

(Eingegangen den 12. Juli 1991)

Abstract

The reaction of $[(NH_3)_2CuCo(CO)_4]$ (1a) with 1,3,5-trimethyl-1,3,5-triazacyclohexane (Me₃triaz) yields the tetranuclear compound $[(NH_3) (\eta^2, \mu_2-Me_3triaz)Cu_2\{\mu-Co(CO)_4)\}\{Co(CO)_4\}\}$ with Me₃triazand Co(CO)₄-bridged Cu₂-dumbbells. Similar methylenediamine ligands react in a Mannich-type manner: 1a and N, N, N', N'-tetramethylmethylenediamine (tmmd) react to give $[\{HN(CH_2NMe_2)_2\}-CuCo(CO)_4\}$ with the bis(N, N-dimethylaminomethyl)amine ligand formed by a twofold aminomethylation of NH₃; substitution of NH₃ by n-propylamine in 1a and reaction with tmmd yields the analogous compound with the N, N-bis(N', N'-dimethylaminomethyl)-n-propylamine ligand. Dimethylamine, the by-product of the aminomethylation, is detected as a coordination compound with CuCo(CO)₄. The reaction of 1a with methylenediamine dihydrochloride yields a linear polymer with tetranuclear Cu₂{Co(CO)₄} units and bridging N: N'-hexamethylenetetramine ligands. All new coordination compounds are characterized by single crystal X-ray structure analysis.

Zusammenfassung

 $[(NH_3)_2CuCo(CO)_4]$ (1a) reagiert mit 1,3,5-Trimethyl-1,3,5-triazacyclohexan (Me₃triaz) zur vierkernigen Verbindung $[(NH_3)(\eta^2,\mu_2,Me_3\text{triaz})Cu_2\{\mu-Co(CO)_4)\}$ {Co(CO)₄)], in der eine Cu₂-Hantel von

^{*} VI. Mitteilung: P. Klüfers und U. Wilhelm, J. Organomet. Chem., eingereicht.

einem Me₃triaz-Ligand und einer Co(CO)₄-Gruppe überbrückt ist. Andere Liganden mit dem Methylendiamin-Grundgerüst reagieren im Sinne einer Mannich-Reaktion: **1a** und N, N, N', N'-Tetramethylmethylendiamin (tmmd) bilden [{HN(CH₂NMe₂)₂}CuCo(CO)₄], das den durch zweifache Aminomethylierung von NH₃ entstandenen Bis(N,N-dimethylaminomethyl)amin-Ligand enthält; Austausch von NH₃ durch n-Propylamin in **1a** und Reaktion mit tmmd ergibt die analoge Verbindung mit dem N,N-Bis(N',N'-dimethylaminomethyl)-n-propylamin-Ligand. Das bei der Aminomethylierung entstehende Dimethylamin wird als Komplex mit CuCo(CO)₄ nachgewiesen. Die Umsetzung von **1a** mit Methylendiamindihydrochlorid ergibt ein lineares Polymer, in dem vierkernige Cu₂{Co(CO)₄}₂-Einheiten von N: N'-Hexamethylentetraminliganden verbrückt sind. Alle neuen Komplexverbindungen sind durch Röntgenstrukturanalyse an Einkristallen charakterisiert.

Einleitung

Aufgrund der substituierbaren Amminliganden ist $[(NH_3)_2CuCo(CO)_4]$ (1a) ein geeignetes Edukt für die Herstellung weiterer zwei- und mehrkerniger Verbindungen mit Cu-Co-Bindungen [1,2]. Besonders leicht gelingt die Synthese von Fünfringchelaten an Kupfer mit Ethylendiamin (en), 1,10-Phenanthrolin (phen) und Diethylentriamin (dien) [2]. Mit N,N,N',N'-Tetramethylethylendiamin (tmed) und 2,2'-Bipyridyl (bpy) wurden auch auf anderem Weg Verbindungen dieses Typs hergestellt [3,4].

Wir berichten nun über Umsetzungen, in denen wir anstelle eines *Ethylen* diaminderivats den *Methylen* diamin-Grundkörper eingesetzt haben. Wir haben dabei keine Verbindungen mit einem ungünstigen Vierringchelat gefunden; wie auch bei anderen Liganden mit 1,3-ständigen Ligatoratomen wie Carboxylat oder 1,1-Diphosphinomethanen finden wir vielmehr Verbrückung von Metallatomhanteln durch die Methylendiaminliganden. Eine Verbindung dieses Typs haben wir mit $[(NH_3)(\mu-Me_3triaz)Cu_{2}\{\mu-Co(CO)_4\}]$ (2) (Me₃triaz = 1,3,5-Trimethyl-1,3,5-triazacyclohexan) isoliert, während wir mit den reaktiveren Liganden N,N,N',N'-Tetramethylmethylendiamin (tmmd) und Methylendiamin (md) nur Folgeprodukte solcher Komplexe hergestellt haben.

Ergebnisse

1,3,5-Trimethyl-1,3,5-triazacyclohexan (Me₃triaz) reagiert mit 1a unter Ammoniakverdrängung zur vierkernigen Verbindung 2 (Gl. 1). In den orangen Kristallen

von 2 befindet sich der Me₃triaz-Ligand im η^2, μ_2 -Bindungsmodus. Die Struktur läßt sich von der ebenfalls vierkernigen Verbindung [{(NH₃)CuCo(CO)₄}₂] (1b) herleiten, in der zwei Amminkupfer-Reste durch zwei μ -Co(CO)₄-Gruppen überbrückt sind [2]. Der Me₃triaz-Ligand verdrängt nun einen Amminliganden aus

Fig. 1. [(NH₃)(η^2 , μ_2 -Me₃triaz)Cu₂{ μ -Co(CO)₄}(Co(CO)₄]] (2). Molekülstruktur im Kristall.

dem Komplex und einen der beiden Co(CO)₄-Reste aus der verbrückenden in die endständige Position. Das Methylendiamin-Derivat nimmt dabei eine Sesselkonformation mit all-äquatorialen Methylgruppen (Fig. 1) ein.

In 2 bleibt das Donorvermögen eines N-Atoms des Me₃triaz-Liganden ungenutzt, nur *ein* Methylendiamin-Fragment des triaz-Ringes koordiniert an die Cu₂-Hantel. tmmd enthält eben dieses koordinierende Diaminfragment; bei der Reaktion von **1a** mit der doppeltmolaren Menge tmmd bleibt die Reaktion jedoch nicht bei der Bildung eines zu **2** analogen Mehrkernkomplexes stehen, sondern durch NH₃-Angriff auf das reaktive Methylendiaminderivat entsteht der neue Ligand Bis(N,N-dimethylaminomethyl)amin in Form des zweikernigen Komplexes [{HN(CH₂NMe₂)₂}CuCo(CO)₄] (**3a**) (Gl. 2, Fig. 2).

(3a)

Die Produktseite wird durch die Entfernung von Ammoniak aus dem Reaktionsgleichgewicht begünstigt. Daß Ammoniak die Umsetzung inhibiert, zeigt sich vor allem, wenn gemäß Gl. 3 durch den Einsatz von 1b anstelle von 1a eine

$$2\left\langle \begin{array}{c} \text{NMe}_{2} \\ \text{NMe}_{2} \end{array} \right\rangle \xrightarrow{4} 3a + \left[\{(\text{NHMe}_{2})\text{CuCo}(\text{CO})_{4}\}_{2} \right] + 2 \text{ NH}_{3}$$
(3)

geringere Anfangskonzentration an Ammoniak eingestellt wird. In Gl. 3 ist außerdem das Verhältnis Cu/Amin gegenüber Gl. 2 auf das Dreifache erhöht.

Fig. 2. [{HN(CH₂NMe₂)₂}CuCo(CO)₄] (3a). Molekülstruktur im Kristall.

Unter diesen Bedingungen wird das entstehende Dimethylamin in größerer Menge als Kupferkomplex gebunden, so daß [{(Me_2NH)CuCo(CO)_4}2] (4) bereits in der ersten Kristallfraktion in Form oranger Kristalle neben hellgelbem **3a** ausfällt. Der Aufbau von 4 entspricht dem von 1b mit Dimethylaminliganden anstelle der Amminliganden in 1b (Fig. 3).

Die Herkunft des mittleren N-Atoms im neu gebildeten Chelatligand von 3a aus einem Ammoniak-Molekül läßt sich durch ein Markierungsexperiment belegen.

Fig. 3. [{ $(Me_2NH)CuCo(CO)_4$ }₂] (4). Molekülstruktur im Kristall. *m* ist die Spur der kristallographischen Spiegelebene.

Fig. 4. [{ⁿPrN(CH₂NMe₂)₂}CuCo(CO)₄] (3b). Molekülstruktur im Kristall.

Werden in **1a** die Amminliganden durch n-Propylamin ersetzt und wird anschließend mit tmmd umgesetzt, so entsteht in einer analogen Reaktion $[{^nPrN(CH_2NMe_2)_2}CuCo(CO)_4]$ (3b) (Fig. 4).

Auch die Stammverbindung Methylendiamin (md) selbst tritt bei der Umsetzung mit **1a** nicht unverändert als Ligand in einen Kupferkomplex ein. Bei der Reaktion von md · 2 HCl mit **1a** in H₂O/CH₂Cl₂ entsteht aus dem eingesetzten md vielmehr Hexamethylentetramin (hmt), das als Ligand an einen vierkernigen Cu₂Co₂-Cluster bindet, wie er auch in **1b** und **4** vorliegt. In $[(\mu -N: N'-hmt)-{CuCo(CO)_4}_2]_{n/n} \cdot THF$ (**5**) bauen μ -N: N'-hmt-Liganden mit {CuCo(CO)_4}_2-Fragmenten ein lineares Polymer auf (Fig. 5). Auch diese Reaktion wird durch NH₃ inhibiert. Die Bindung der Amminliganden von **1a** durch NH₄Cl-Bildung ist für die Bildung von **5** notwendig. Die Umsetzung von **1b** mit hmt in CH₂Cl₂/H₂O ergibt keinen Hinweis auf die Bildung eines hmt-CuCo(CO)₄-Addukts.

Diskussion

Der Aufbau von 2 und die schnellere Reaktion von tmmd mit dem ammoniakärmeren 1b machen es wahrscheinlich, daß der erste Schritt im Aufbau der neuen Liganden die Bildung eines mehrkernigen Komplexes ist, in dem der Methylendiamin-Ligand zwei Cu-Atome verbrückt. Das von der NH_3 -Konzentration abhängige Lösungsgleichgewicht (Gl. 4), durch das mit 1b eine Spezies mit

$$2[(\mathrm{NH}_3)_2\mathrm{CuCo(CO)}_4] \rightleftharpoons [\{(\mathrm{NH}_3)\mathrm{CuCo(CO)}_4\}_2] + 2 \mathrm{NH}_3$$
(4)
(1a) (1b)

einer Cu₂-Hantel zur Verfügung gestellt wird, könnte für diesen ersten Schritt von Bedeutung sein, zumal die Molekülstruktur von 2 zeigt, daß sich eine μ -Co(CO)₄-Gruppe durch einen Methylendiaminligand in eine endständige Stellung verschieben läßt.

Fig. 5. $[(\mu - N; N'-hmt){CuCo(CO)_4}_2]_{n/n}$ THF (5). Elementarzelle, Projektion entlang [100]. Große Kreise: Cu (dunkel), Co (hell); kleine Kreise: O (dunkel), N (mittel), C (hell). Die laufenden Nummern der THF- und hmt-C-Atome sind nicht angegeben. c_p bezeichnet die Projektion von c; O(9)' ist durch -x, y - 1/2, 1/2 - z mit der tabellierten Lage von O(9) verbunden. Die Symmetrieelemente der Raumgruppe sind den Konventionen der Internationalen Tabellen folgend wiedergegeben. Die Faltungslinie der Cu₂Co₂-Rhomben ist gestrichelt eingezeichnet.

Ein weiterer Hinweis für die Bildung einer Cu_2 -Spezies als notwendigem ersten Schritt ist die Beobachtung, daß es weder mit $[(en)\text{CuCO(CO)}_4]$ [2] (Stabilisierung des monomeren Zweikernkomplexes durch Chelatbildung) noch mit $[(C_5H_{10}-NNH_2)_3\text{CuCO(CO)}_4]$ [11] (Begünstigung des zweikernigen Komplexes durch Überschuß eines schwerflüchtigen Liganden) unter den mit **1a** angewendeten Bedingungen zur einer Reaktion kommt.

In Schema 1 ist am Beispiel der Bildung von **3a** ein möglicher Ablauf der zweifachen Aminomethylierung des Ammoniaks formuliert; mangels tieferer Einsicht ist das Schema durchgängig mit nichtkomplexiertem Nucleophil und komplexiertem Elektrophil formuliert.

tmmd bindet in einer zu Gl. 1 analogen Reaktion unter NH_3 -Verdrängung an ein $Cu_2\{Co(CO)_4\}_2$ -Fragment, anschließend erfolgt nucleophiler Angriff durch Ammoniak. Nach dem Austausch eines Protons liegt N, N-Dimethylmethylendiamin neben Dimethylamin vor. Die gleiche Abfolge wiederholt sich anschließend mit N, N-Dimethylmethylendiamin als Nucleophil. Unter Abspaltung eines zweiten Moleküls Dimethylamin entsteht der neue Ligand Bis(N, N-dimethylaminomethyl)-amin.

Die Umsetzung entspricht einer Mannich-Reaktion mit NH_3 bzw. ⁿPr NH_2 als acider Komponente. Sowohl mit dem gebildeten Triamin wie auch mit weiterem Ammoniak sind zahlreiche analoge Folgereaktionen denkbar, die zu einer Fülle weiterer höherer Amine führen würden. Die Umsetzung von tmmd mit 1 und auch mit dem n-Propylamin-Analogen führt wohl deswegen bevorzugt zum Triamin, da dieses ein Chelat mit dem zweikernigen CuCo(CO)₄-Rest bildet und so weiteren Umsetzungen entzogen ist.

Bei der Reaktion von 1a mit md ist ein Einfluß der $CuCo(CO)_4$ -Gruppe auf die Hexamethylentetramin-Bildung aus den hier vorgestellten Versuchen nicht zu belegen. Das bei der Umsetzung von 1a mit md · 2HCl freigesetzte Methylendiamin ist unbeständig [5]; durch Hydrolyse entstehender Formaldehyd sowie Ammoniak kondensieren in wäßriger Lösung auch ohne die Anwesenheit eines Metalls zu Hexamethylentetramin [6].

Die in den Tabellen 2, 4, 6, 8 und 10 zusammengestellten Atomabstände und Winkel ergänzen die in anderen $CuCo(CO)_4$ -Verbindungen gefundenen Werte in sinnvoller Weise.

Ein neues Strukturelement liegt in der gewinkelten Cu(2)-Co(1)-Cu(1)-Co(2)-Kette in 2 vor. Die Cu-Co-Abstände zeigen einen einleuchtenden Gang: Cu(2)

Tabelle	1
---------	---

Atom	x	у	z	$U_{\rm eq}$
Cu(1)	4266.5(4)	1995.8(2)	2748.9(3)	264(1)
Cu(2)	6398.4(4)	920.2(2)	3153.5(3)	257(1)
Co(1)	3903.2(5)	812.0(3)	3815.8(3)	240(2)
Co(2)	3982.7(5)	3453.1(3)	2976.3(4)	294(2)
O(1)	3733(4)	4833(2)	4161(2)	644(13)
O(2)	1107(3)	2717(2)	3421(2)	563(11)
O(3)	3834(3)	4070(2)	1087(2)	543(11)
O(4)	7091(3)	2954(2)	3447(2)	422(9)
O(5)	1987(3)	578(2)	5376(2)	588(11)
O(6)	1446(3)	1075(2)	2444(2)	427(10)
O(7)	6025(3)	1810(2)	4899(2)	405(9)
O(8)	4839(3)	- 792(2)	3347(2)	475(10)
N(1)	8507(4)	1140(3)	3707(3)	411(13)
N(2)	6514(3)	616(2)	1750(2)	276(9)
N(3)	4725(3)	1651(2)	1336(2)	270(9)
N(4)	7360(3)	1928(2)	1568(2)	316(10)
C(1)	3855(4)	4286(2)	3695(3)	393(14)
C(2)	2280(4)	2956(2)	3230(3)	393(12)
C(3)	3887(4)	3813(2)	1821(3)	379(14)
C(4)	5828(4)	3091(2)	3247(3)	341(11)
C(5)	2742(4)	669(2)	4767(3)	368(14)
C(6)	2508(4)	1039(2)	2939(3)	306(11)
C(7)	5300(4)	1426(2)	4390(3)	319(11)
C(8)	4538(4)	-149(2)	3518(3)	335(11)
C(9)	5104(4)	813(2)	1227(3)	305(11)
C(10)	3364(5)	1831(3)	737(3)	446(16)
C(11)	6007(4)	2134(2)	1026(3)	342(12)
C(12)	8612(6)	2454(3)	1344(4)	584(19)
C(13)	7738(4)	1116(2)	1399(3)	322(11)
C(14)	6876(5)	- 224(3)	1587(3)	432(16)

 $[(NH_3)(\eta^2,\mu_2-Me_3triaz)Cu_2(\mu-Co(CO)_4)](Co(CO)_4)]$ (2). Lageparameter (×10⁴) und U_{eq} -Werte in pm² der Nichtwasserstoffatome (in Klammern: Standardabweichung der letzten Dezimalstelle)

bindet nur ein Co-Atom, der Cu(2)–Co(1)-Abstand kommt mit 244.5 pm daher den Abständen in den zweikernigen Verbindungen **3a** und **3b** nahe. Cu(1) bindet an zwei Co-Atome, die beiden Cu(1)–Co-Abstände sind dementsprechend größer; der Cu(1)–Co(1)-Abstand, an dem die μ -Co(CO)₄-Gruppe beteiligt ist, ist dabei der größte.

In den bisher beschriebenen zweikernigen Verbindungen $[N_2\text{CuCo(CO)}_4]$ (N = Stickstoffligatoratom) variiert der Cu–Co-Abstand in einem Bereich von 6 pm. Die kürzesten Cu–Co-Bindungen werden in Fünfringchelaten gefunden (en: 236.9, phen: 239.4 [2], tmed: 237.9 [3], bpy: 240.4 [4], N-Benzyl-N', N'-dimethylethylendiamin: 241.4 pm [7]). Die hier beschriebenen Sechsringchelate liegen ebenso am oberen Ende dieses Bereichs (**3a**: 241.1, **3b**: 240.6 pm) wie auch Verbindungen mit zwei einzähnigen Stickstoffliganden (NH₃: 242.9, Morpholin: 241.6 pm [2]).

3a und **3b** haben mit den übrigen zweikernigen Stickstoffbase-Addukten an $CuCo(CO)_4$ zwei typische Strukturmerkmale gemeinsam: (a) Das N₂Cu-Fragment bindet geometrisch nicht scharf definiert zwischen einer C₃- und einer S₄-Achse eines Co(CO)₄-Tetraeders, das durch die Anbindung des fünften Substituenten an

Tabelle 2

		-			
Cu(1)-Cu(2)	266.5(2)	Cu(1)-Co(1)	256.0(2)	Cu(1)-Co(2)	250.3(2)
Cu(2)-Co(1)	244.5(1)	Cu(1) - N(3)	218.4(3)	Cu(1) - C(2)	251.0(4)
Cu(1) - C(4)	240.2(4)	Cu(1) - C(6)	226.7(4)	Cu(2)-N(1)	202.8(4)
Cu(2) - N(2)	210.5(3)	Cu(2) - C(7)	224.3(4)	Cu(2)-C(8)	251.4(4)
Co(1)C(5)	176.9(4)	Co(1) - C(6)	177.3(4)	Co(1) - C(7)	179.0(4)
Co(1)-C(8)	177.9(4)	Co(2) - C(1)	176.0(4)	Co(2)-C(2)	177.3(4)
Co(2)–C(3)	178.1(4)	Co(2) - C(4)	176.8(4)	O(1)-C(1)	115.3(5)
O(2)–C(2)	115.5(5)	O(3) - C(3)	114.8(5)	O(4)-C(4)	116.2(5)
O(5)–C(5)	113.8(5)	O(6)–C(6)	115.7(5)	O(7)–C(7)	115.6(5)
O(8)-C(8)	115.0(4)	N(2)-C(9)	146.7(5)	N(2)-C(13)	147.8(5)
N(2)-C(14)	147.9(6)	N(3)-C(9)	146.8(4)	N(3)-C(10)	148.3(5)
N(3)-C(11)	148.0(5)	N(4) - C(11)	144.4(5)	N(4) - C(12)	146.6(6)
N(4)-C(13)	143.7(5)				
Cu(1)-Co(1)-Cu	(2)	64.30(3)	C(5)-Co(1)-	C(6)	100.4(2)
C(5)-Co(1)-C(7)		97.3(2)	C(5)-Co(1)-	C(8)	105.2(2)
C(6)-Co(1)-C(7)		130.6(2)	C(6)-Co(1)-	C(8)	103.9(2)
C(7)-Co(1)-C(8)		115.2(2)	C(1)-Co(2)-	C(2)	100.5(2)
C(1)-Co(2)-C(3)		106.3(2)	C(1)-Co(2)-	C(4)	103.2(2)
C(2)-Co(2)-C(3)		110.5(2)	C(2)-Co(2)-	C(4)	124.7(2)
C(3)-Co(2)-C(4)		109.5(2)	Co(1)-C(5)-	O(5)	179.6(4)
Co(1)-C(6)-O(6))	167.1(3)	Co(1)C(7)-	O(7)	167.1(4)
Co(1)-C(8)-O(8))	174.6(3)	Co(2)-C(1)-	O(1)	178.3(3)
Co(2)-C(2)-O(2)	i	172.1(3)	Co(2)-C(3)-	-O(3)	177.8(3)
$C_0(2) - C(4) - O(4)$	•	171.1(3)	N(1)-Cu(2)-	-N(2)	110.3(1)
Cu(2)-N(2)-C(9)	•	111.7(2)	Cu(2)-N(2)-	-C(13)	105.0(2)
Cu(2)-N(2)-C(14	4)	114.1(2)	Cu(1)-N(3)-	-C(9)	114.3(2)
Cu(1)-N(3)-C(10))	108.5(2)	Cu(1)-N(3)-	-C(11)	108.1(2)
C(9)-N(2)-C(13)		107.9(3)	C(9) - N(2) - C(9) -	C(14)	108.6(3)
C(13)-N(2)-C(14	4)	109.2(3)	C(9)-N(3)-C	2(10)	108.5(3)
C(9)-N(3)-C(11)		108.7(3)	C(10)-N(3)-	-C(11)	108.6(3)
C(11)-N(4)-C(12	2)	110.2(3)	C(11)-N(4)-	-C(13)	109.3(3)
C(12)-N(4)-C(13	3)	111.2(3)	N(2)-C(9)-N	N(3)	110.8(3)
N(3)-C(11)-N(4))	109.0(3)	N(2)-C(13)-	-N(4)	108.1(3)

 $[(NH_3)(\eta^2,\mu_2-Me_3triaz)Cu_2\{\mu-Co(CO)_4\}]$ (2). Ausgewählte Abstände (pm) und Winkel (°) (in Klammern: Standardabweichung der letzten Dezimalstelle)

Cobalt nicht stärker verzerrt wird als in Verbindungen mit dem $[Co(CO)_4]^-$ -Ion [8]; (b) es bilden sich halbverbrückende Carbonylgruppen vom Typ bent semibridging carbonyl [9] aus; die kleinsten Cu-C-Abstände gehören dabei zu den am stärksten von der Linearität abweichenden Co-C-O-Gruppen (kleinste Werte von Cu-C/Co-C-O: **3a**: 220.6 pm/165.3°, **3b**: 224.4 pm/167.8°).

Die Sechsringchelate **3a** und **3b** sind gespannt. In **3a** sind die endocyclischen Winkel der die N₂Cu-Einheit überbrückenden C-N-C-Gruppe gegenüber dem Tetraederwinkel aufgeweitet; in **3b** ist die Verzerrung schwächer, da der Chelatring hier etwas stärker gewellt ist. Die Umgebung des nicht an Kupfer koordinierten N-Atoms (N(2)) ist in beiden Verbindungen im Vergleich zum Pseudotetraeder der sp^3 -Hybridisierung eingeebnet. In **3a** entsprechen die Winkel um N(2) vielmehr einer sp^2 -Hybridisierung (C-N-C: 120.3(3), H-N-C: 120(3) und 116(3)°) und auch die N-C-Abstände sind gegenüber einer N(sp^3)-C(sp^3)-Bindung im erwarteten Umfang [10] verkürzt: (N(2)-C(7) = N(2)-C(8) = 141.2 pm; vgl. den mittleren Abstand zwischen C und nichtkoordiniertem N in **5** von 146.2 pm).

Atom	x	y	Z	U _{eq}	
Cu	3494.6(4)	673.3(3)	6233.0(2)	306(1)	
Со	4775.8(4)	- 93.6(3)	4940.2(2)	327(1)	
O(1)	2897(3)	1845(2)	4276(2)	711(10)	
O(2)	6695(2)	236(2)	6485(1)	486(8)	
O(3)	3313(3)	- 2445(2)	4977(2)	755(9)	
O(4)	7192(3)	- 269(3)	3688(2)	888(13)	
N(1)	1257(2)	271(2)	6345(2)	424(8)	
N(2)	1198(3)	1651(3)	7628(2)	450(11)	
N(3)	3846(3)	1785(2)	7326(2)	319(8)	
C(1)	3618(4)	1070(3)	4553(2)	447(10)	
C(2)	5792(3)	173(3)	5940(2)	381(9)	
C(3)	3872(3)	- 1522(3)	4962(2)	469(10)	
C(4)	6235(3)	- 192(3)	4187(2)	501(11)	
C(5)	1161(5)	-850(4)	6863(3)	663(17)	
C(6)	461(4)	109(6)	5488(3)	787(19)	
C(7)	480(4)	1249(4)	6845(2)	510(13)	
C(8)	2446(4)	2404(3)	7561(3)	456(11)	
C(9)	4339(4)	1078(3)	8108(2)	485(11)	
C(10)	4964(5)	2721(3)	7136(3)	587(16)	

[{HN(CH₂NMe₂)₂}CuCo(CO)₄] (**3a**). Lageparameter (×10⁴) und U_{eq} -Werte in pm² der Nichtwasserstoffatome (in Klammern: Standardabweichung der letzten Dezimalstelle)

Die Kristallstrukturen der hier vorgestellten Verbindungen sind mit Ausnahme von 5 aus Einzelmolekülen aufgebaut. 5 ist ein lineares Polymer aus zweibindigen $Cu_2\{Co(CO)_4\}_2$ -Gruppen, die durch μ -N: N'-Hexamethylentetramin-Liganden

Tabelle 4

 $[{HN(CH_2NMe_2)_2}CuCo(CO)_4]$ (3a). Ausgewählte Abstände (pm) und Winkel (°) (in Klammern: Standardabweichung der letzten Dezimalstelle)

Cu-Co	241.1(1)	Cu-N(1)	209.0(2)	Cu-N(3)	207.0(3)
Cu-C(1)	255.2(3)	Cu-C(2)	220.6(3)	Co-C(1)	176.3(4)
Co-C(2)	178.1(3)	Co-C(3)	178.4(3)	Co-C(4)	174.4(3)
O(1)-C(1)	115.7(4)	O(2)-C(2)	115.9(3)	O(3)-C(3)	114.2(4)
O(4)–C(4)	114.9(4)	N(1) - C(5)	146.6(5)	N(1)-C(6)	148.2(5)
N(1)-C(7)	149.4(5)	N(3)–C(8)	148.9(5)	N(3)-C(9)	147.7(4)
N(3)-C(10)	148.0(5)	N(2)-C(7)	141.2(4)	N(2)-C(8)	141.2(5)
C(1)-Co-C(2)		117.7(1)	C(1)-Co-C(3)		112.3(2)
C(1)-Co-C(4)		106.8(1)	C(2) - Co - C(3)		111.8(1)
C(2)-Co-C(4)		99.0(1)	C(3) - Co - C(4)		107.9(1)
Co-C(1)-O(1)		117.5(3)	Co-C(2)-O(2)		165.3(2)
Co-C(3)-O(3)		179.0(3)	Co-C(4)-O(4)		179.3(3)
Cu-Co-C(4)		155.1(1)	N(1)-Cu-N(3)		102.4(1)
Cu - N(1) - C(5)		106.3(2)	Cu - N(1) - C(6)		115.6(2)
Cu-N(1)-C(7)		110.2(2)	C(5)-N(1)-C(6)		108.9(3)
C(5)-N(1)-C(7)		108.8(3)	C(6)-N(1)-C(7)		106.8(3)
Cu-N(3)-C(8)		109.2(2)	Cu-N(3)-C(9)		110.8(2)
Cu-N(3)-C(10)		111.8(2)	C(8) - N(3) - C(9)		108.5(3)
C(8)-N(3)-C(10)		108.0(2)	C(9)-N(3)-C(10)	108.3(3)
C(7)-N(2)-C(8)		120.0(3)	N(1)-C(7)-N(2)		115.1(3)
N(3)-C(8)-N(2)		115.6(3)			

Tabelle 3

verbrückt werden. Bei dieser Anordnung nutzt weder das Kupfer sein in zweikernigen Verbindungen mit $CuCo(CO)_4$ -Fragment gezeigtes Bindungsvermögen für Stickstoffliganden aus, noch werden alle N-Atome des Hexamethylentetramins zur Ausbildung von N-Cu-Bindungen herangezogen. Es scheinen sterische Gründe zu sein, die die Bindung von mehr als einem tertiären Monaminliganden an Kupfer verhindert.

Die heteronuclearen Vierkerncluster in 4 und 5 sind nicht wie in 1b planar, sondern sie sind entlang der Cu-Cu-Achse gefaltet, wodurch eine ekliptische Anordnung einander gegenüberliegender CO-Gruppen möglich wird. Besonders augenfällig ist die ekliptische Anordnung bei 4, wo eine durch die Raumgruppe $Pmn2_1$ vorgegebene Spiegelebene durch eine nichtkristallographische Spiegelebene ergänzt wird, so daß sich angenähert die Molekülsymmetrie C_{2v} ergibt.

Experimentelles

Alle Umsetzungen wurden unter Ausschluß von Luft und Feuchtigkeit mit Stickstoff als Inertgas durchgeführt. Die gebildeten Verbindungen sind bei -40° C und unter Sauerstoffausschluß haltbar. IR- bzw. ¹H-NMR-Spektren wurden auf den Spektrometern Perkin-Elmer 883 bzw. Bruker WH 300 aufgenommen. Die bei den einzelnen Verbindungen angegebenen Wellenzahlen beziehen sich auf den Bereich der CO-Valenzschwingungen. **1a** und **1b** werden nach der in [2] angegebenen Methode hergestellt.

Ammin-(μ -tetracarbonylcobaltio)-(tetracarbonylcobaltio)- μ -(η^2 -1,3,5-trimethyl-1,3,5-triazacyclohexan)dikupfer(3Cu-Co), [(NH₃)(η^2 , μ_2 -Me₃triaz)Cu₂{ μ -Co-(CO)₄}]{Co(CO)₄}] (2)

Zu einer Lösung von 0.523 g (1.95 mmol) **1a** in 50 ml CH₂Cl₂ werden bei -30° C 0.146 ml (1.02 mmol) 1,3,5-Trimethyl-1,3,5-triazacyclohexan (Me₃triaz) gegeben. Das Lösemittel wird nach 1 h Rühren bei -20° C abgezogen und der Rückstand in 50 ml CH₂Cl₂ aufgenommen. Einengen auf ≈ 5 ml, Überschichten mit 50 ml n-Pentan und Kristallisation bei -40° C ergeben 0.540 g **2** = 90%. IR (KBr, cm⁻¹): $\tilde{\nu} = 2026$ m, 1938s, 1876Sch; IR (CH₂Cl₂, cm⁻¹): $\tilde{\nu} = 2037$ m, 2029m, 1961Sch, 1941s, 1912Sch, 1873Sch. Für die Kristallstrukturbestimmung wurden Kristalle aus einem Ansatz **1a**/Me₃triaz = 1/2 verwendet. Die Identität mit **2** wurde durch Bestimmung der Gitterkonstanten und durch Vergleich der IR-Daten überprüft.

 $\{\eta^2$ -Bis(dimethylaminomethyl)amin $\}$ cupriotetracarbonylcobalt(Cu-Co), [{HN-(CH_2NMe_2)_2}CuCo(CO)_4] (**3a**)

(a) 0.389 g (1.45 mmol) **1a** werden bei -20° C in 50 ml CH₂Cl₂ vorgelegt und 0.375 ml (2.75 mmol) *N*,*N*,*N'*,*N'*-Tetramethylmethylendiamin (tmmd) zugegeben. Es wird 1 h gerührt, zur Trockene eingeengt, in 50 ml CH₂Cl₂ aufgenommen und das Lösemittel erneut abgezogen, dann wird der Rückstand in 5 ml CH₂Cl₂ gelöst und mit 50 ml n-Pentan überschichtet. Bei -40° C wird 0.140 g = 26.4% **3a** in Form hellgelber Nadeln erhalten.

(b) 0.503 g (1.00 mmol) **1b** werden bei -25° C in 50 ml CH₂Cl₂ mit 0.136 ml (1.00 mmol) tmmd umgesetzt. Nach Abziehen des Lösemittels, Aufnehmen in CH₂Cl₂ und Überschichten mit der zehnfachen Menge an n-Pentan kristallisiert

Atom	<u>x</u>	У	z	U _{eq}	
Cu	762.1(2)	8119.8(4)	3701.0(4)	414(1)	
Co	1947.7(3)	8158.8(6)	2500	421(1)	
O(1)	1720(2)	10953(3)	3559(2)	607(9)	
O(2)	504(2)	6622(4)	1588(2)	877(14)	
O(3)	3069(2)	6263(4)	3735(3)	1143(18)	
O(4)	2910(2)	9249(4)	734(2)	862(14)	
N(1)	- 251(2)	9509(3)	4010(2)	443(9)	
N(2)	- 837(2)	7537(3)	5018(2)	475(10)	
N(3)	431(2)	6218(3)	4511(3)	486(10)	
C(1)	1742(2)	9766(5)	3200(3)	475(13)	
C(2)	1086(2)	7240(5)	1976(3)	650(14)	
C(3)	2617(3)	7018(5)	3238(3)	700(16)	
C(4)	2535(3)	8789(4)	1424(3)	562(14)	
C(5)	- 1020(2)	8624(5)	4239(3)	498(13)	
C(6)	- 519(2)	6173(4)	4621(3)	497(12)	
C(7)	- 454(3)	10428(6)	3088(4)	720(19)	
C(8)	- 78(3)	10465(5)	4916(3)	643(17)	
C(9)	824(3)	6312(6)	5553(4)	693(17)	
C(10)	697(3)	4832(5)	4033(5)	820(20)	
C(11)	-1412(3)	7447(5)	5930(3)	513(14)	
C(12)	-2300(3)	6864(6)	5717(3)	610(16)	
C(13)	- 2843(3)	6889(7)	6695(4)	790(20)	

 $[{^nPrN(CH_2NMe_2)_2}CuCo(CO)_4]$ (3b). Lageparameter (×10⁴) und U_{eq} -Werte in pm² der Nichtwasserstoffatome (in Klammern: Standardabweichung der letzten Dezimalstelle)

3a zusammen mit **4** und **1b** aus. IR (KBr, cm⁻¹): $\vec{\nu} = 2019m$, 1930s, 1902Sch, 1867s; IR (CH₂Cl₂, cm⁻¹): $\vec{\nu} = 2020m$, 1935s, 1900Sch, 1860m; ¹H-NMR (CD₂Cl₂, -70°C): $\delta = 2.49$ (s, 12H, N(CH₃)₂); 2.84 (t, ³J 4.4 Hz, 1H, NH); 3.56 (d, ³J 4.4 Hz, 4H, CH₂).

$\{\eta^2-N, N-Bis(dimethylaminomethyl)-n-propylamin\} cupriotetracarbonylcobalt(Cu-Co), <math>\{\{^nPrN(CH_2NMe_2)_2\} CuCo(CO)_4\}$ (3b)

Zu 0.212 g (0.82 mmol) **1a** in 25 ml CH₂Cl₂ werden bei -25° C 0.335 ml (4.1 mmol) n-Propylamin gegeben und die Lösung bei gleicher Temperatur eingeengt. Nach Zugabe von 50 ml CH₂Cl₂ und 0.55 ml (4.1 mmol) tmmd wird auf wenige ml eingeengt und mit 100 ml n-Pentan überschichtet. Bei -40° C kristallisieren nach einigen Wochen aus einem Öl Kristalle von **3b** aus. IR (KBr, cm⁻¹): $\tilde{\nu} = 2018m$, 1926s, 1900Sch, 1865s; ¹H-NMR (CD₂Cl₂, -30° C): $\delta = 0.85$ (t, ³J 7.3 Hz, 3H, CH₂CH₃); 1.4–1.5 (m, 2H, CH₂CH₂CH₃); 2.45 (s, 12H, N(CH₃)₂); 2.79 (t, ³J 7.8 Hz, 2H, CH₂CH₃CH₃); 3.46 (s, 4H, NCH₂N).

Weitere Umsetzungen mit tmmd

Bei analog geführten Umsetzungen von tmmd mit (Ethylendiamin)cupriotetracarbonylcobalt(Cu-Co), [(cn)CuCo(CO)₄] [2], und mit Tris(*N*-aminopiperidin)cupriotetracarbonylcobalt(Cu-Co), [(C₅H₁₀NNH₂)₃CuCo(CO)₄] [11], wurden lediglich die Ausgangsverbindungen zurückerhalten. Auch NH₃ bzw. Propylamin allein reagicren mit tmmd in CH₂Cl₂ bei Temperaturen bis 0°C bzw. bei RT nicht.

Tabelle 5

Tabelle 6

Cu-Co	240.6(1)	Cu-N(1)	207.0(3)	Cu-N(3)	209.4(3)	
Cu–C(1)	224.4(4)	Cu-C(2)	240.2(4)	Co-C(1)	175.5(4)	
Co-C(2)	172.4(4)	Co-C(3)	175.5(5)	Co-C(4)	175.2(4)	
O(1)-C(1)	118.3(5)	O(2)-C(2)	118.1(5)	O(3)-C(3)	117.5(6)	
O(4)-C(4)	114.0(5)	N(1) - C(5)	147.9(5)	N(1)-C(7)	148.4(6)	
N(1)-C(8)	147.8(5)	N(2)-C(5)	143.8(5)	N(2)-C(6)	143.9(5)	
N2-C(11)	147.4(5)	N(3)-C(6)	149.1(4)	N(3)-C(9)	146.9(6)	
N(3)-C(10)	147.1(6)	C(11)-C(12)	151.1(7)	C(12)-C(13)	151.1(7)	
Co-Cu-N(1)		134.50(8)	Co-Cu-N(3))	121.20(8)	
N(1)-Cu-N(3)		103.3(1)	Cu-Co-C(1))	63.0(1)	
Cu-Co-C(2)		68.9(1)	Cu-Co-C(3))	96.1(1)	
Cu-Co-C(4)		155.4(1)	C(1)Co-C(2	2)	117.8(2)	
C(1)-Co-C(3)		109.7(2)	C(1)-Co-C(4	4)	102.6(2)	
C(2)-Co-C(3)		112.5(2)	C(2)-Co-C(-	4)	105.4(2)	
C(3)-Co-C(4)		107.9(2)	Cu-Co-C(4))	115.4(1)	
Cu-N(1)-C(5)		108.7(2)	Cu-N(1)-C(7)	111.2(2)	
Cu-N(1)-C(8)		112.0(2)	C(5)-N(1)-C	2(7)	107.2(3)	
C(5)-N(1)-C(8))	108.6(3)	C(7) - N(1) - C	2(8)	108.9(3)	
C(5)-N(2)-C(6))	115.3(3)	C(5) - N(2) - C(5) -	2(11)	117.8(3)	
C(6)-N(2)-C(1)	1)	116.1(3)	Cu-N(3)-C(6)	108.4(2)	
Cu - N(3) - C(9)		107.2(3)	Cu-N(3)-C(10)	116.5(3)	
C(6)-N(3)-C(9))	109.4(3)	C(6) - N(3) - C(3)	C(10)	107.2(3)	
C(9)-N(3)-C(10))	108.1(4)	Co-C(1)-O(1)	167.8(3)	
Co-C(2)-O(2)		178.0(3)	Co-C(3)-O(3)	179.5(4)	
Co-C(4)-O(4)		177.5(4)	N(1)-C(5)-N	N(2)	110.9(3)	
N(2)-C(6)-N(3))	110.7(3)	N(2)-C(11)-	-C(12)	115.9(3)	
C(11)-C(12)-O	(13)	111.1(4)				

 $[{^nPrN(CH_2NMe_2)_2}CuCo(CO)_4]$ (3b). Ausgewählte Abstände (pm) und Winkel (°) (in Klammern: Standardabweichung der letzten Dezimalstelle)

 $Bis(\mu-dimethylamincuprio)$ - $bis(tetracarbonylcobalt)(4Cu-Co), [{(Me_2NH)-CuCo(CO)_4}_2] (4)$

Die Mutterlauge der Kristallisation von **3a**, Reaktion a, wird bis auf wenige ml eingeengt und mit der zehnfachen Menge n-Pentan überschichtet. Es fällt ein Gemisch aus Kristallen von hellgelbem **3a** und orangefarbenem **4**. Bei der Herstellung von **3a** nach Methode b wird dieses Gemisch bereits bei der ersten Kristallisation erhalten. Zusätzlich findet man bei der zweiten Methode Kristalle von **1b**. **4**; IR (KBr, cm⁻¹): $\tilde{\nu} = 2046$ Sch, 2027m, 1926Sch, 1891s. **2**: IR (KBr, cm⁻¹): $\nu = 2027$ m, 1928s.

catena-di- μ -{ μ' -N : N'-hexamethylentetramin-dikupfer(Cu : Cu')}-bis-(tetracarbonyl-cobalt)(4Cu-Co)-Tetrahydrofuran, [(μ -N:N'-hmt){CuCo(CO)₄}₂]_{n/n} · THF (5)

Zu 0.441 g (1.64 mmol) in 50 ml CH₂Cl₂ gelöstem 1a und 0.391 g (3.28 mmol) md \cdot 2HCl werden bei -20° C 20 ml entgastes, bidest. H₂O geben und die Lösung auf 1°C aufgetaut. Nach 2 h Rühren wird ein gelber Feststoff unter Kühlung abfiltriert (aus der Dichlormethan-Phase des Filtrats läßt sich nach dem Trocknen, Einengen und Überschichten mit n-Pentan 0.161 g = 39% kristallines 1b gewinnen). Der Feststoff wird mit 20 ml H₂O gewaschen und im Vakuum getrocknet. Nach Lösen in THF und Überschichten mit n-Pentan werden 0.124 g = 22.6%

Tabelle 7

Atom	x	у	z	U _{eq}
Cu	1072.8(4)	7169(1)	3249(1)	49.2(2)
Co(1)	0	6736(2)	5000	47.0(3)
Co(2)	0	5859(2)	1630(1)	40.7(3)
O(1)	0	10942(8)	4454(5)	90(3)
O(2)	0	7110(10)	7323(4)	123(4)
O(3)	2050(4)	4236(7)	4787(3)	82(2)
O(4)	0	10192(9)	1441(5)	91(3)
O(5)	0	4960(10)	- 644(4)	113(3)
O(6)	2003(4)	3450(6)	2182(3)	79(2)
N	2541(4)	8724(9)	3123(5)	100(2)
C(1)	0	9270(20)	4620(7)	63(3)
C(2)	0	6960(10)	6393(7)	77(3)
C(3)	1260(5)	5267(8)	4789(4)	57(2)
C(4)	0	8490(10)	1595(7)	55(3)
C(5)	0	5320(10)	229(7)	65(3)
C(6)	1237(5)	4476(8)	2031(4)	54(2)
C(7)	3066(6)	9410(10)	4083(5)	87(3)
C(8)	3245(6)	8370(10)	2270(5)	101(3)

[{ $(Me_2NH)CuCo(CO)_4$ }_2] (4). Lageparameter (×10⁴) und U_{eq} -Werte in 10 pm² der Nichtwasserstoffatome (in Klammern: Standardabweichung der letzten Dezimalstelle)

gelbe Kristalle von 5 erhalten. IR (KBr, cm⁻¹): $\tilde{\nu} = 2043$ Sch, 2032s, 1990m, 1959s, 1933Sch, 1917s, 1879s.

Bei der Verwendung von konz. NH_3 -Lösung anstelle des Wassers fällt kein Niederschlag aus; ebenso wurde bei Umsetzungen von Hexamethylentetramin mit **1b** in CH_2Cl_2/H_2O keine Reaktion beobachtet.

Tabelle 8

Cu-Co(1)	253.8(1)	Cu-Co(2)	253.6(2)	Cu-Cua	249.2(1)
Cu-N	200.7(5)	Cu-C(3)	232.5(5)	Cu-C(6)	237.7(5)
Co(1)-C(1)	177.1(10)	Co(1) - C(2)	174.9(9)	Co(1)-C(3)	178.6(6)
Co(2)-C(4)	177.4(8)	Co(2)-C(5)	179.0(9)	Co(2)C(6)	178.4(6)
O(1)-C(1)	114.7(11)	O(2) - C(2)	116.9(10)	O(3)–C(3)	115.1(7)
O(4)–C(4)	116.2(10)	O(5)-C(5)	111.9(10)	O(6)-C(6)	114.2(7)
N-C(7)	142.3(9)	N-C(8)	136.5(9)		
Co(1)–Cu–Co(2)	114.11(3)	Cu-Co(1)-Cua		58.80(2)
Cu-Co(2)-Cu	a	58.84(3)	C(1)-Co(1)-C(2)	100.7(4)
C(1)-Co(1)-C((3)	119.6(2)	C(2)-Co(1)-C(3)	101.2(2)
C(3)-Co(1)-C	(3) <i>a</i>	110.0(3)	C(4)-Co(2)-C(5)	100.3(4)
C(4)-Co(2)-C(4)	(6)	121.9(2)	C(5)-Co(2)-C(6)	99.8(2)
C(6)-Co(2)-C	(6) <i>a</i>	107.3(3)	Cu-N-C(7)		117.8(4)
Cu-N-C(8)		118.7(5)	C(7)-N-C(8)		117.3(5)
Co(1)-C(1)-O	(1)	174.9(8)	Co(1)-C(2)-O(2	2)	179.6(9)
Co(1)-C(3)-O	(3)	171.1(5)	Co(2)-C(4)-O(4	l)	171.9(8)
Co(2)-C(5)-O	(5)	179.2(8)	Co(2)-C(6)-O(6	5)	171.7(5)
Diederwinkel (Co(1), Cu, Cu <i>a</i>	-Cu <i>a</i> , Cu, Co(2)			148.88(5)
·					

 $[{(Me_2NH)CuCo(CO)_4}_2]$ (4). Ausgewählte Abstände (pm) und Winkel (°) (in Klammern: Standardabweichung der letzten Dezimalstelle) a: Atom in -x, y, z

Tabelle 9

Atom	x	у	z	U _{eq}
Cu(1)	4813.1(4)	- 1566.7(3)	3382.0(2)	246(1)
Cu(2)	3281.0(4)	- 2900.7(3)	2747.8(2)	239(1)
Co(1)	2619.2(4)	- 1159.3(3)	2549.5(2)	230(1)
Co(2)	4938.2(5)	- 3265.3(3)	3887.9(2)	242(1)
O(1)	1144(3)	327(2)	1636(1)	429(9)
O(2)	2968(3)	- 3(2)	3926(1)	467(9)
O(3)	232(2)	- 2423(2)	2803(2)	463(9)
O(4)	4836(3)	- 1582(2)	1541(2)	490(10)
O(5)	6505(3)	- 4863(2)	4612(2)	559(11)
O(6)	2082(3)	- 3990(2)	4026(1)	553(10)
O(7)	6574(3)	- 3167(2)	2561(1)	385(8)
O(8)	5044(3)	- 1820(2)	5090(1)	450(9)
N(1)	2702(3)	- 4026(2)	2016(1)	212(8)
N(2)	3546(3)	- 5575(2)	1519(1)	211(7)
N(3)	1048(3)	- 5349(2)	1720(2)	289(9)
N(4)	2080(3)	- 4489(2)	708(1)	291(9)
C(1)	1714(3)	-256(2)	1988(2)	295(11)
C(2)	2940(3)	- 504(2)	3409(2)	309(11)
C(3)	1230(3)	- 1991(2)	2707(2)	316(11)
C(4)	3988(4)	-1451(2)	1958(2)	331(11)
C(5)	5891(4)	- 4240(3)	4333(2)	344(11)
C(6)	3167(4)	- 3691(3)	3912(2)	353(12)
C(7)	5886(4)	-3162(2)	3067(2)	301(11)
C(8)	5021(3)	-2328(2)	4580(2)	316(11)
C(9)	3866(3)	- 4741(2)	2029(2)	231(10)
C(10)	1409(3)	- 4547(2)	2228(2)	279(11)
C(11)	2217(3)	-6036(2)	1756(2)	270(10)
C(12)	2427(4)	- 3684(2)	1218(2)	261(10)
C(13)	3231(4)	- 5183(2)	739(2)	273(11)
C(14)	829(4)	- 4977(3)	951(2)	375(11)
O(9)	1222(3)	2010(2)	4748(2)	654(11)
C(15)	1714(5)	2378(3)	4070(3)	555(17)
C(16)	1366(7)	3426(3)	4030(3)	640(20)
C(17)	258(7)	3555(4)	4582(3)	680(20)
C(18)	531(7)	2737(4)	5129(3)	651(19)

 $[(\mu - N : N' - hmt)(CuCo(CO)_4)_2]_{n/n}$ THF (5). Lageparameter (×10⁴) und U_{cq} -Werte in pm² der Nichtwasserstoffatome (in Klammern: Standardabweichung der letzten Dezimalstelle)

Röntgenstrukturanalysen

Für die kristallographische Untersuchung wurde ein Siemens-Stoe AED oder ein Stoe-STADI-IV benutzt (Mo- K_{α} , ω/ϑ -Abtastung). Die Untergrundintensität wurde vor und nach der Reflexintensität bestimmt. Die Intensitätsabnahme mit der Zeit wurde durch jeweils drei Reflexe, die alle 120 min gemessen wurden, bestimmt und entsprechend berücksichtigt. Zur Strukturlösung und Verfeinerung wurde sHELXS-86 und SHELX-76 eingesetzt, Abstände und Winkel wurden mit PLATON berechnet, Strukturbilder wurden mit ORTEP gezeichnet. Die gemessenen Intensitäten wurden empirisch nach der Absorption korrigiert (ψ -Abtastung); alle Nicht-H-Atome wurden anisotrop verfeinert; bei **3b** und **4** wurden die H-Atome in berechneten Lagen (C-H = N-H = 96 pm) mit einem Temperaturfaktor (T.F.) für alle H-Atome einbezogen, bei **2**, **3a** und **5** wurden die H-Atome individuell isotrop Tabelle 10

 $[(\mu - N : N' - hmt)[CuCo(CO)_4]_2]_{n/n}$ THF (5). Ausgewählte Abstände (pm) und Winkel (°) (in Klammern: Standardabweichung der letzten Dezimalstelle). *a*: Atom in 1 - x, y - 1/2, 1/2 - z; *b*: Atom in 1 - x, y + 1/2, 1/2 - z

Cu(1)–Cu(2)	256.8(1)	Cu(1)-Co(1)	254.4(1)	Cu(1)-Co(2)	251.7(1)
Cu(2)-Co(1)	251.0(1)	Cu(2)Co(2)	253.62(9)	Cu(1)-C(2)	232.0(3)
Cu(1)–C(7)	251.4(3)	Cu(1) - C(8)	237.6(3)	Cu(1)-N(2)b	208.1(3)
Cu(2) - N(1)	208.0(3)	Cu(2) - C(3)	232.6(3)	Cu(2) - C(4)	256.8(3)
Cu(2)–C(6)	235.4(4)	Cu(2) - C(7)	254.0(4)	Co(1) - C(1)	178.6(3)
Co(1)-C(2)	178.8(3)	Co(1)-C(3)	179.4(3)	Co(1)-C(4)	178.3(4)
Co(2)-C(5)	178.1(4)	Co(2)-C(6)	179.5(4)	Co(2) - C(7)	178.0(4)
Co(2)-C(8)	178.8(3)	O(1)-C(1)	113.7(4)	O(2)-C(2)	115.1(4)
O(3)–C(3)	114.8(4)	O(4)-C(4)	115.1(5)	O(5)-C(5)	113.9(5)
O(6)-C(6)	114.7(5)	O(7)-C(7)	115.3(4)	O(8)–C(8)	114.8(4)
N(1)-C(9)	148.8(4)	N(1)-C(10)	150.2(4)	N(1)-C(12)	150.3(4)
N(2)-C(9)	148.8(4)	N(2)-C(11)	150.8(4)	N(2)C(13)	150.2(4)
N(3)-C(10)	145.8(4)	N(3)-C(11)	146.4(4)	N(3)-C(14)	146.5(5)
N(4)-C(12)	146.1(4)	N(4) - C(13)	145.8(4)	N(4) - C(14)	146.5(5)
O(9)-C(15)	142.2(6)	O(9)-C(18)	140.4(6)	C(15)-C(16)	148.8(6)
C(16)-C(17)	150.6(9)	C(17)-C(18)	150.4(8)		
Co(1)-Cu(1)-Co(2)	115.59(4)	Co(1)-Cu(2)-	Co(2)	116.14(4)
Cu(1)-Co(1)-Cu(2)	61.07(4)	Cu(1)-Co(2)-	Cu(2)	61.08(4)
Cu(2)-Cu(1)-N(2)) <i>b</i>	156.02(8)	Cu(1)-Cu(2)-	N(1)	158.73(9)
C(1)-Co(1)-C(2)		99.9(1)	C(1)-Co(1)-C	(3)	101.7(1)
C(1)-Co(1)-C(4)		100.0(2)	C(2)-Co(1)-C	(3)	106.0(2)
C(2)-Co(1)-C(4)		122.2(2)	C(3)-Co(1)-C	(4)	121.9(2)
C(5)-Co(2)-C(6)		101.2(2)	C(5)-Co(2)-C	(7)	98.8(2)
C(5)-Co(2)-C(8)		104.2(2)	C(6)-Co(2)-C	(7)	125.6(2)
C(6)-Co(2)-C(8)		102.6(2)	C(7)-Co(2)-C	(8)	120.6(1)
Co(1)-C(1)-O(1)		179.3(3)	Co(1)-C(2)-O	(2)	169.6(3)
Co(1)-C(3)-O(3)		171.3(3)	Co(1) - C(4) - O	(4)	174.8(3)
Co(2)-C(5)-O(5)		179.5(3)	Co(2)-C(6)-O	(6)	170.9(3)
Co(2)-C(7)-O(7)		173.6(3)	Co(2)-C(8)-O	(8)	171.1(3)
Cu(2) - N(1) - C(9)		108.8(2)	Cu(2)-N(1)-C	(10)	112.9(2)
Cu(2)-N(1)-C(12)	112.2(2)	C(9)-N(2)-Cu	(1) <i>a</i>	109.8(2)
C(11)-N(2)-Cu(1))a	110.0(2)	C(13)-N(2)-C	u(1)a	114.6(2)
C(9)-N(1)-C(10)		107.7(2)	C(9)-N(1)-C(12)	107.7(2)
C(10)-N(1)-C(12))	107.3(3)	C(9) - N(2) - C(11)	107.3(2)
C(9)-N(2)-C(13)		107.7(2)	C(11)-N(2)-C	(13)	107.1(3)
C(10) - N(3) - C(11))	108.7(3)	C(10) - N(3) - C	(14)	108.9(3)
C(11)-N(3)-C(14)	109.1(3)	C(12) - N(4) - C	(13)	109.9(3)
C(12)-N(4)-C(14)	108.8(3)	C(13)-N(4)-C	(14)	108.3(3)
N(1)-C(9)-N(2)		112.7(2)	N(1)C(10)N	(3)	111.9(3)
N(2)-C(11)-N(3)		111.6(2)	N(1)-C(12)-N	(4)	111.4(2)
N(2)-C(13)-N(4)		112.0(3)	N(3)-C(14)-N	(4)	111.9(3)
C(15)-O(9)-C(18)	110.4(3)	O(9)-C(15)-C	(16)	107.7(4)
C(15)-C(16)-C(17	7)	104.4(4)	C(16)-C(17)-C	C(18)	103.7(5)
O(9)-C(18)-C(17)	107.0(4)			
Diederwinkel Co(1), Cu(1), C	u(2)–Cu(1), Cu(2), C	o(2)		159.3(2)

mit freien Lageparametern verfeinert. Bei 2, 3b und 4 wurde nach der sekundären Extinktion korrigiert. Der größte Wert für Verschiebung/Fehler im letzten Verfeinerungszyklus war für alle Strukturbestimmungen ≤ 0.001 . Für die in der enan-

	2	За	3b	4	5
Formel	C ₁₄ H ₁₈ Co ₂ Cu ₂ N ₄ O ₈	C ₁₀ H ₁₇ CoCuN ₃ O ₄	C ₁₃ H ₂₃ CoCuN ₃ O ₄	$C_{12}H_{14}Co_2Cu_2N_2O_8$	$C_{18}H_{20}Co_2Cu_2N_4O_0$
Formelmasse	615.277	365.741	407.822	559.210	681.336
Raumgruppe	$P2_1/n$	$P2_{1}2_{1}2_{1}$	$Pca2_1$	Pmn2 ₁	$P2_1/c$
a (pm)	881.9(4)	909.7(5)	1561.7(8)	1161.3(4)	955.5(2)
(md) d	1692.8(9)	1108.1(6)	917.8(5)	673.7(2)	1383.8(4)
c (bm)	1449.6(7)	1494.3(8)	1278.5(6)	1251.3(4)	1781.6(5)
β (°)	92.42(3)	60	90	06	94.06(4)
$V/Z (10^6 \text{ pm}^3)$	540.5(5)	376.6(4)	458.1(5)	489.5(3)	587.4(3)
Z	4	4	4	2	4
Pher.	1.8902(17)	1.6128(17)	1.4782(16)	1.8971(12)	1.9260(10)
Kristall (10 ⁻⁶ mm ³)	$15 \times 20 \times 40$	$25 \times 35 \times 53$	$55 \times 43 \times 30$	$13 \times 19 \times 53$	$10 \times 15 \times 43$
Meßtemperatur (°C)	- 74	- 65	- 65	- 63	20
N(hkl) für Metrik	21	44	40	43	46
$\vartheta_{\min} - \vartheta_{\max}$ (Metrik)	12.2-25.4°	20-28.5°	22.3-30.6°	20.7-28.5°	10.4-22.6°
$\vartheta_{\min} - \vartheta_{\max} \left(I_{hkl} \right)$	3-50°	3–54°	3-54°	3–50°	3–50°
N_{hkl} mit $I > 0$	3565	3269	3911	1781	3834
μ (cm ⁻¹)	35.0	24.3	20.8	37.2	32.3
T _{min}	0.2252	0.3733	0.3241	0.3074	0.4769
Tmax	0.4951	0.4596	0.4794	0.4477	0.5912
8	0.00066(2)	1	0.00072(5)	0.00367(5)	1
$N_{Parameter}$	344	240	249	140	396
R	0.032	0.026	0.033	0.030	0.032
Rw	0.024	0.019	0.025	0.020	0.024
ΔF : (e/10 ⁶ pm ³) _{max}	0.58	0.49	1.46	0.84	0.41
ΔF : (e/10 ⁶ pm ³) _{min}	-0.35	- 0.43	- 0.73	- 0.98	-0.35

Tabelle 11 Kristallographische Daten für 2, 3a, 3b, 4 und 5 369

tiomorphen Raumgruppe $P2_12_12_1$ kristallisierende Verbindung **3a** ergab die Aufstellung mit umgekehrter Polarität R = 0.027 und $R_W = 0.020$. Die angegebenen *R*-Werte sind definiert durch $R = \sum \Delta / \sum |F_o|$ und $R_W = \{\sum (w\Delta^2) / \sum (wF_o^2)\}^{-1/2}$, $\Delta = ||F_o| - |F_c||$, T.F. sind definiert durch $\exp\{-2\pi^2(\sum_{i,j}U_{ij}h_ih_ja_i^*a_j^*)\}$. Einzelheiten der Kristallstrukturbestimmungen sind in Tabelle 11 zusammengefaßt; das Ergebnis der Strukturanalysen ist in den Tabellen 1 bis 10 zusammengestellt.

Die Figuren 1 bis 5 zeigen die ermittelten Strukturen (50% Aufenthaltswahrscheinlichkeit bei der Darstellung der Schwingungsellipsoide; bei den Carbonylgruppen C(n)-O(n) und bei weiteren Atomen C(n) ist nur *n* angegeben); Cu-C-Abstände < 260 pm sind durch dünne Bindungsstriche hervorgehoben.

Weitere Einzelheiten zu den Kristallstrukturbestimmungen (x, y, z, U_{ij}) der Nicht-H-Atome U; weitere Abstände und Winkel, $F_o/F_c/\sigma(F_o)$) können beim Fachinformationszentrum Energie, Physik, Mathematik GmbH, W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55681, der Autoren und des Zeitschriftenzitats angefordert werden.

Dank

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft (Kl 624/2-2) und dem Fonds der Chemischen Industrie gefördert.

Literatur

- 1 R. Fuchs und P. Klüfers, Z. Naturforsch., Teil B, 46 (1991) 507.
- 2 M. Achternbosch, H. Braun, R. Fuchs, P. Klüfers, A. Selle und U. Wilhelm, Angew. Chem., 102 (1990) 825; Angew. Chem., Int. Ed. Engl., 29 (1990) 783.
- 3 G. Doyle, K.A. Eriksen und D. van Engen, Organometallics, 4 (1985) 877.
- 4 D.J. Darensbourg, Chi-Shan Chao, C. Bischoff und J. Reibenspies, Inorg. Chem., 29 (1990) 4637.
- 5 J.M.Z. Gladych und D. Hartley, in D. Barton, W.D. Ollis (Hrsg.), Comprehensive Organic Chemistry, Vol. 2, Pergamon Press, Oxford, 1979, S. 82.
- 6 J.F. Walker, Formaldehyde, 3rd ed., Reinhold Publ. Corp., New York, 1964, S. 511.
- 7 M. Achternbosch und P. Klüfers, unveröffentlicht.
- 8 P. Klüfers, Z. Kristallogr., 167 (1984) 253.
- 9 H. Crabtree und M. Lavin, Inorg. Chem., 25 (1986) 805.
- 10 J.E. Huheey, Anorganische Chemie, de Gruyter, Berlin, 1988, S. 255f.
- 11 R. Fuchs und P. Klüfers, unveröffentlicht.